Skip to contents

Topic Modelling

Functions for finding latent topics in text.

make_DTMs()
Create a Document Term Matrix (DTM) from a data frame
fit_LDAs()
fit LDA topic models on Document Term Matrices
explore_LDAs()
Explore & Visualise LDA topic models
shiny_topics_explore()
Render a Shiny app to interactively explore topic models

Utility Functions

Functions which help the user join the topics to original data frame, classify them and rename them for plotting

topics_link()
Link topics and their probabilities back to the original data frame.
topics_classify()
Classify the topics in your linked data frame
topics_rename()
Rename the topics after classifying and linking
top_terms_rename()
Quickly rename the topics of the top_terms charts

Explore Functions

The funcitons called by explore_LDAs

bigrams_segmentr()
Bigram/ngram viz Function
coherence_segmentr()
Coherence for each topic
diff_terms_segmentr()
Diff Terms Function
exemplars_segmentr()
Example posts for each topic
probabilities_segmentr()
Topic Probabilities per post
top_terms_segmentr()
The Top Terms

Example datasets

Toy datasets for testing the functions.

sprinklr_export
Example Sprinklr Export